Please wait a minute...
浙江大学学报(工学版)
机械与能源工程     
基于燃烧均匀性的对冲燃烧锅炉高温腐蚀抑制
周永刚,李培,敖翔,赵虹
浙江大学 能源清洁利用国家重点实验室,浙江 杭州 310027
High temperature corrosion inhibition for opposed firing boiler based on combustion distribution evenness
ZHOU Yong gang, LI Pei, AO Xiang, ZHAO Hong
State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
 全文: PDF(1857 KB)   HTML
摘要:

为了消除锅炉水冷壁高温腐蚀对锅炉安全运行的影响,通过实测电厂锅炉空预器入口的O2和CO体积分数沿锅炉横向截面的分布特性,从燃烧均匀性角度分析侧墙还原性气氛的主要原因,并进行相应优化.结果表明:超超临界对冲燃烧锅炉由于炉膛中间燃烧状况剧烈,产生一定的负压,导致靠近侧墙的燃烧器的燃烧器区域过量空气系数比设计值低011.燃烧器由于供氧不足产生CO,是侧墙还原性气氛及水冷壁高温腐蚀的主要原因.将靠近侧墙的燃烧器一次风煤粉浓度降低20%后,该燃烧器区域的过量空气系数达到设计值,侧墙附近O2的体积分数升高约2%,水冷壁的高温腐蚀程度减弱847%,锅炉的热效率未受影响.

Abstract:

The distribution characteristics of oxygen volume fraction and carbon monoxide volume fraction were measured at the inlet of air pre heater along the transverse section of boiler to eliminate the effect of high temperature corrosion of boiler water wall on the boilers safe operation. The main reason of reducing atmosphere beside side wall was analyzed from the perspective of combustion distribution evenness. Accordingly, the reducing atmosphere beside side wall was further optimized. The detected excess air ratio was 011 lower than the designed value in the burner region adjacent to the side wall, which was due to the negative pressure caused by the violent combustion in the center of the furnace of ultra supercritical opposed firing boiler. The deficit of oxygen led to the formation of CO, which was found to be the main reason for reducing atmosphere beside side wall and high temperature corrosion of boiler water wall. The optimization was conducted by decreasing the pulverized coal concentration of primary air by 20% in the burner region close to the side wall. In consequence, the excess air ratio in this burner region reached the designed value. The oxygen volume fraction increased by 2%, and the high temperature corrosion degree of boiler water wall declined by 847%. Meanwhile, the thermal efficiency of the boiler was not affected.

出版日期: 2015-10-15
:  TK 223.3  
通讯作者: 李培,男,助理工程师. ORCID:0000 0003 2039 7730.     E-mail: princelee@live.cn
作者简介: 周永刚(1974-),男,工程师,从事锅炉燃烧、煤的燃烧特性以及不同煤种的掺配掺烧研究. ORCID:0000 0003 3701 7466. E-mail:trooper@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

周永刚,李培,敖翔,赵虹. 基于燃烧均匀性的对冲燃烧锅炉高温腐蚀抑制[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008 973X.2015.09.021.

ZHOU Yong gang, LI Pei, AO Xiang, ZHAO Hong. High temperature corrosion inhibition for opposed firing boiler based on combustion distribution evenness. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008 973X.2015.09.021.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008 973X.2015.09.021        http://www.zjujournals.com/eng/CN/Y2015/V49/I9/1768

[1] 陈鸿伟, 李永华, 梁化忠. 锅炉高温腐蚀实验研究[J]. 中国电机工程学报, 2003, 32(1): 168-171.
CHEN Hong wei, LI Yong hua, LIANG Hua zhong. Experimental study on boiler high temperature corrosion [J].Proceedings of the CSEE,2003, 32(1): 168-171.
[2] 牟春华, 张义政, 王春昌. 某台墙式燃烧锅炉严重高温腐蚀和低负荷飞灰可燃物含量高的原因分析[J]. 热力发电, 2008, 37(7): 39-42.
MU Chun hua, ZHANG Yi zheng, WANG Chun chang. Cause analysis of serious high temperature corrosion and high content of unburned combustibles in fly ash under low load of one wall firing boiler [J]. Thermal Power Generation, 2008, 37(7): 39-42.
[3] 钟万里, 吴奭登, 曾凡云. 超临界锅炉水冷壁高温腐蚀分析及对策[J]. 热力发电, 2009, 38(12): 106-108.
ZHONG Wan li, WU Shi deng, ZENG Fan yun. Cause analysis of high temperature corrosion on water wall of supercritical once through boilers and countermeasures thereof [J]. Thermal Power Generation, 2009, 38(12): 106-108.
[4] NAVA PAZ J C, PLUMLEY A L, CHOW O K, et al. Waterwall corrosion mechanisms in coal combustion enviroments [J]. Materials at High Temperatures, 2002, 19(3): 127-137.
[5] YANG J G, ZHANG Q F, YANG Y, et al. The transformation mechanism of H2S beside the water wall under reducing condition [J]. Advanced Materials Research, 2012(512 515): 2471-2474.
[6] SRIVASTAVA S C, GODIWALLA K M, BANERJEE M K. Review fuel ash corrosion of boiler and superheater tubes [J]. Journal of Materials Science, 1997, 32(4): 835-849.
[7] 赵虹,魏勇. 燃煤锅炉水冷壁烟侧高温腐蚀的机理及影响因素[J]. 动力工程, 2002, 22(2): 1700-1704.
ZHAO Hong, WEI Yong. Discussion on the mechanisms and factors of the gas side hign temperature corrosion in water wall tubes for coal fired boilers [J]. Energy Engineering, 2002, 22(2): 1700-1704.
[8] 杨厚君, 李正刚, 李朝志,等. DG1025锅炉高温再热器高温腐蚀原因分析与防止措施[J]. 中国电机工程学报, 2003. 23(11): 215-218.
YANG Hou jun, LI Zheng gang, LI Chao zhi, et al. Analysis on the causes of high temperature corrosion and the measures for its protection [J]. Proceedings of the CSEE, 2003, 23(11): 215-218.
[9] 韩奎华, 路春美, 李官鹏, 等. 大型锅炉水冷壁防腐现状与防腐措施探讨[J]. 电站系统工程, 2004, 20(2): 37-39.
HAN Kui hua, LU Chun mei, LI Guan peng, et al. Current situation and discussion about preventive measure to the high temperature corrosion of water wall tubes in large boilers [J]. Power System Engineering, 2004, 20(2): 37-39.
[10] 周颖驰. 锅炉水冷壁高温腐蚀原因分析及对策[J]. 热力发电, 2013, 42(7): 138-141.
ZHOU Yin chi. High temperature corrosion of water wall tubes in a supercritical boiler: cause analysis and countermeasures [J]. Thermal Power Generation, 2013, 42(7): 138-141.
[11] 李敏, 丘纪华, 向军,等. 锅炉水冷壁高温腐蚀运行工况的防腐模拟[J]. 中国电机工程学报, 2002, 22(7): 150-154.
LI Min, QIN Ji hua, XIANG Jun, et al. An anti corrosion simulation for the high temperature corrosion on boiler water wall during different operation[J]. Proceedings of the CSEE, 2002, 22(7): 150154.
[12] 中节环立为(武汉)能源技术有限公司. 膜式水冷壁锅炉防高温腐蚀结焦方法及其装置: 中华人民共和国国家知识产权局, CN 103438438 A [P], 2013 12 11.
[13] 杨扬. 600MW超临界机组低NOx燃烧协调优化研究[D]. 杭州:浙江大学, 2013.
YANG Yang. Low NOx combustion optimization and coordination research of 600 MW supercritical unit [D]. Hangzhou:Zhejiang University,2013.
[14] 洪荣坤, 沈跃良, 赵振峰. 600 MW超临界对冲燃烧锅炉CO和NOx排放特性的研究[J]. 动力工程学报, 2012. 32(12):922-927.
HONG Rong kong, SHEN Yue liang, ZHAO Zhen feng. Emision characteristics of CO and NOx from opposed firing boiler in a 600 MW supercritical unit [J]. Journal of Chinese Society of Power Engineering, 2012, 32(12):922-927.
[15] 李德波, 沈跃良. 前后对冲旋流燃煤锅炉CO和NOx分布规律的试验研究[J]. 动力工程学报,2013, 33(7): 502-506, 554.
LI De bo, SHEN Yue liang. Experimental study on CO and NOx emission of a swirl opposed coal fired boiler [J]. Journal of Chinese Society of Power Engineering, 2013, 33(7): 502-506, 554.
[16] 岑可法, 姚强, 骆仲泱,等. 高等燃烧学[M]. 杭州: 浙江大学出版社, 2002:361-363.
[17] 李兵臣. 对冲燃烧锅炉二次风配风影响的数值模拟研究[D]. 保定: 华北电力大学,2013:74.
LI Bing cheng. Research on the simulation of two numerical wind with the wind effect of opposed firing boiler [D]. Baoding: North China Electric Power University, 2013:74.
[18] 肖祥. 660 MW旋流对冲燃煤锅炉燃烧过程的数值模拟[D]. 长沙:长沙理工大学, 2013.
XIAO Xiang. Numerical simulation of combustion of 660 MW swirl opposedfiring boiler [D]. Changsha: Changsha University of Science and Technology,2013.
[19] 刘建全, 孙保民, 张广才,等. 1 000 MW超超临界旋流燃烧锅炉稳燃特性数值模拟与优化[J]. 中国电机工程学报,2012. 32(8): 19-27, 144.
LIU Jian quan, SUN Bao min, ZHANG Guan cai, et al. Numerical simulation and optimization on stable combustion of a 1 000 MW ultra supercritical unit swirl combustion boiler [J]. Proceedings of the CSEE, 2012, 32(8): 19-27, 144.
[20] 樊泉桂, 阎维平, 闫振林,等,锅炉原理[M]. 北京: 中国电力出版社, 2008: 37-38.
[21] 陈敏生, 廖晓春, 楼杰. 对冲燃烧锅炉水冷壁高温腐蚀问题的探讨[J]. 电站系统工程, 2013,29(5): 33-34,36.
CHEN Ming sheng, LIAO Xiao chun, LOU Jie. Discussion on high temperature corrosion of water wall in opposed firing boiler [J]. Proceedings of the CSEE, 2013,29(5): 33-34, 36.

No related articles found!